Energy Transfer, PE, KE and Efficiency

ENERGY

• Part of our everyday lives:
 – Energetic people
 – Food that is “full of energy”
 – High cost of electric energy
 – Risks of nuclear energy
• Energy:
 – An ability to accomplish change
 • When anything happens in the physical world, energy is somehow involved.

May 13, 2011
Energy Transfer, PE, KE and Efficiency

Work

• Definition:
 – A measure of the change a force produces:
 – “The work done by a force acting on an object is equal to the magnitude of the force multiplied by the distance through which the force acts”.

\[W = Fd \]
Energy Transfer, PE, KE and Efficiency

Work

- Work is done…
 - …by a force when the object it acts on moves when the force is applied.
 - NO work is done by pushing against a stationary wall.
 - Work IS done throwing a ball because the ball MOVES while being pushed during the throw.
Energy Transfer, PE, KE and Efficiency

Work

- Equation for work:

\[w.d. = F \times d \]

- In words:

- Work Done = Force \times Distance through which the force acts

- The direction of the force (F) is assumed to be the same as the direction of the distance (d)

- A force perpendicular to the direction of motion of an object cannot do work on the object
Energy Transfer, PE, KE and Efficiency

The Joule

• joule (J)
 – The SI unit of work
 • Amount of work done by a force of one Newton when it acts through a distance of one meter:

1 Joule = 1 Newton-metre

• Example:
 – Push a box 8 m across the floor with a force of 100 N (22.5 lbs) performs 800 J of work:

\[W = Fd = (100N)(8m) = 800N \cdot m = 1J \]
Energy Transfer, PE, KE and Efficiency

Direction of Force

- When a force and the distance through which it acts are parallel, the work done is equal to the product of F and d.
- If the forces are NOT parallel, work done is equal to the product of d and the projection of F in the direction of d.

$W = Fd$

$W = F_d d$
Energy Transfer, PE, KE and Efficiency

Power

- The RATE of Doing Work…
 - Rate is the amount of work done in a specified period of time
 - The more powerful something is, the faster it can do work

\[\text{Power} = P = \frac{W}{t} = \frac{\text{work done}}{\text{time interval}} \]
Energy Transfer, PE, KE and Efficiency

Units of Power

- Standard (SI) unit of power is the watt

\[1 \text{ watt (W)} = 1 \text{ joule/second (J/s)} \]

- Example:
 - 500W motor can perform 500J of work
 - ... or 250J of work in 0.5 s
 - ... or 5000J of work in 10 s

- Watts are very small units
 - Kilowatts are used most commonly

\[1 \text{ kilowatt} = 1000W \]
Energy Transfer, PE, KE and Efficiency

Energy

- Definition:
 - Energy is that property something has that enables it to perform work
 - If something has energy, it is able (directly or indirectly) to exert a force on something else and perform work.

- Types of Energy
 - Kinetic – Energy of Motion
 - Potential – Energy of Position

- Energy cannot be created or destroyed only transferred from one or to another
Energy Transfer, PE, KE and Efficiency

Energy Transfer and Transformations

Total energy or work or power in

Machine

Useful energy or work or power out

Non-useful energy or work or power out
(usually heat)
Energy Transfer, PE, KE and Efficiency

Energy Transfer and Transformations

Total energy or work or power in

Machine

Useful energy or work or power out

Non-useful energy or work or power out (usually heat)

Light Bulb
Energy Transfer, PE, KE and Efficiency

Energy Transfer and Transformations

Total energy or work or power in

Machine

Useful energy or work or power out

Non-useful energy or work or power out (usually heat)

Electrical energy or power in

Light Bulb

Light energy or power out

Non-useful heat energy or power out

May 13, 2011
Energy Transfer, PE, KE and Efficiency

Energy Transfer and Transformations

Total energy or work or power in

Machine

Useful energy or work or power out

Non-useful energy or work or power out (usually heat)

Electrical energy or power in

Light Bulb

Light energy or power out

Non-useful heat energy or power out

Loudspeaker

May 13, 2011
Energy Transfer, PE, KE and Efficiency

Energy Transfer and Transformations

Total energy or work or power in → Machine → Useful energy or work or power out

Electrical energy or power in → Light Bulb → Light energy or power out

Electrical energy or power in → Loudspeaker → Sound energy or power out

Useful energy or work or power out

Non-useful energy or work or power out (usually heat)

Non-useful heat energy or power out

Non-useful heat energy or power out
Energy Transfer, PE, KE and Efficiency

Energy Transfer and Transformations

Microphone
Energy Transfer, PE, KE and Efficiency

Energy Transfer and Transformations

Sound energy or power in → Microphone → Useful electrical energy or power out

Non-useful heat energy or work or power out

May 13, 2011
Energy Transfer, PE, KE and Efficiency

Energy Transfer and Transformations

Sound energy or power in

Microphone

Useful electrical energy or power out

Non-useful heat energy or work or power out

Generator
Energy Transfer, PE, KE and Efficiency

Energy Transfer and Transformations

Sound energy or power in

Microphone

Useful electrical energy or power out

Non-useful heat energy or work or power out

Generator

Electrical energy out

Non-useful heat and sound energy or power out

Kinetic energy in
Energy Transfer, PE, KE and Efficiency

Energy Transfer and Transformations

Sound energy or power in

Microphone

Useful electrical energy or power out

Non-useful heat energy or work or power out

Kinetic energy in

Generator

Electrical energy out

Non-useful heat and sound energy or power out

Spring

May 13, 2011
Energy Transfer, PE, KE and Efficiency

Energy Transfer and Transformations

Sound energy or power in → Microphone
- Useful electrical energy or power out
- Non-useful heat energy or work or power out

Kinetic energy in → Generator
- Electrical energy out
- Non-useful heat and sound energy or power out

Kinetic energy in → Spring
- Strain potential energy out
- Non-useful heat and sound energy out

May 13, 2011
Energy Transfer, PE, KE and Efficiency

Kinetic Energy

- Every moving object has the capacity to do work
 - Moving objects can exert forces on other moving or stationary objects
 - Kinetic energy depends on the mass and speed of a moving object

\[
KE = \frac{1}{2} mv^2
\]

Note that \(v^2\) factor means that \(KE\) increases VERY rapidly with increasing speed
Energy Transfer, PE, KE and Efficiency

Kinetic Energy

• Variation of equation for acceleration
 – Example
 • Kinetic energy of a 1000kg car moving at 10 m/s is 50kJ
 • 50kJ of work must be done to start the car from a stop, or stop it when it is moving

\[m = 1,000 \text{ kg}, \nu = 10 \text{ m/s}, \text{KE} = 50,000 \text{ J} \]

\[m = 1,000 \text{ kg}, \nu = 30 \text{ m/s}, \text{KE} = 450,000 \text{ J} \]
When a hammer strikes a nail, the hammer’s kinetic energy is converted into work, which pushes the nail into the wood.
Energy Transfer, PE, KE and Efficiency

Force on a Nail

- Example:
 - Using a hammer with a 600g head to drive a 5mm nail into a piece of wood, what is the force exerted on the nail on impact?

\[\frac{1}{2}mv^2 = Fd \]

\[F = \frac{mv^2}{2d} = \frac{(0.6\text{kg})(4\text{m/s})^2}{2(0.005\text{m})} = 960\text{N} = 216\text{lbs} \]
Energy Transfer, PE, KE and Efficiency

Potential Energy

• The Energy of Position
 – When a stone is dropped, it falls (accelerates) towards the ground, until it hits the ground
 • If the ground is soft, the stone will make a small depression in the ground
 – In its original position, the stone had the capacity to do work, even though it is not moving and has no kinetic energy.
When a stone is held above the ground, it has POTENTIAL ENERGY because if it is dropped, it can do work on the ground (making the hole...

May 13, 2011
Energy Transfer, PE, KE and Efficiency

Gravitational Potential Energy

- Determining PE of something near the earth’s surface

\[W = Fd = mgh \]

Work (force/distance) = (weight/height)

Potential energy = PE = \(mgh \)
Energy Transfer, PE, KE and Efficiency

Potential Energy Example

- Potential energy of a car pushed off a 45m cliff
- Compare with amount of KE done by a car moving at 30m/s

\[PE = mgh = (1000kg)(9.8m/s^2)(45m) = 441kJ \]

\[m = 1,000 \text{ kg}, \; v = 30 \text{ m/s}, \; KE = 450,000 \text{ J} \]

May 13, 2011
Energy Transfer, PE, KE and Efficiency

Examples of Potential Energy

Examples are almost everywhere

- Book on the table
- Skier on the top of a slope
- Water at the top of a waterfall
- Car at the top of a hill
- A stretched spring
- A nail near a magnet

May 13, 2011
Energy Transfer, PE, KE and Efficiency

Potential Energy is Relative

- Gravitational PE depends on the level from which it is measured…
 - Book dropped onto table
 - Book raised over head and dropped to floor
- “True” gravitational PE??
 - Gravitational PE is relative
 - Difference between two PE values is important because…
 - …this difference can be converted from PE to KE.
Energy Transfer, PE, KE and Efficiency

Potential Energy is Relative

• Amount of potential energy is a function of the relative height of the objects
Energy Transfer, PE, KE and Efficiency

Energy Transformations

- Most mechanical processes involve conversions between KE, PE, and work
 - A car rolling down a hill into a valley
 - PE at the top of the hill is converted into KE as the car rolls down the hill
 - KE is converted to PE as the car rolls up the other side
 - Total amount of energy (KE+PE) remains constant
Energy Transfer, PE, KE and Efficiency

Energy Transformations

May 13, 2011
Energy Transfer, PE, KE and Efficiency

Other Forms of Energy

- Chemical Energy
 - Gasoline converted to energy in a car
 - Food converted to energy in our bodies
- Heat Energy
 - Heat from burning coal or oil to make steam to drive power turbines
- Electric Energy
 - Electricity turns motors in homes and factories
- Radiant Energy
 - Energy from the sun
 - Evaporates water to form clouds
 - Provides plants with energy to grow
 - Creates temperature differences that make the wind blow
Energy Transfer, PE, KE and Efficiency

Conservation of Energy

• Fundamental Law of Nature
 – Potential energy
 • Skiing down a hill – What happened to PE that the skier had at the top of the hill?
 • Driving a car, but shutting off the engine and coasting to a stop – What happened to the KE that the car had while moving
 – Energy is never lost, but it can be converted from one form to another

May 13, 2011
Energy Transfer, PE, KE and Efficiency

Conservation of Energy

• The Law of Conservation of Energy:
 – Energy cannot be created or destroyed, although it can be changed from one form to another.
 • This principle has the widest application to all science
 • Applies equally to distant stars and biological processes in living cells.
Energy Transfer, PE, KE and Efficiency

Energy Demand and Type

May 13, 2011
Energy Transfer, PE, KE and Efficiency

The Energy Problem

- Limited Supply, Unlimited Demand
 - The sun – source of most of our energy
 - Food, wood, plants
 - Water power – The hydrological cycle
 - Wind power – Temperature changes
 - Fossil Fuels
 - Originally plants and animals dependent on the sun
 - Nuclear and hydrothermal power
 - Not related to the sun

May 13, 2011
Energy Transfer, PE, KE and Efficiency

Solar Cells

- Variation due to climate and latitude
- £100/watt in 1960, £10/watt today
- Economics still limit widespread application
Energy Transfer, PE, KE and Efficiency

Fossil Fuels

- Limited Supply
 - Most large deposits of oil and gas found
 - Remaining reserves = 100 years??
 - No new deposits being formed
- Problems with coal
 - Mining needed to extract from earth
 - Air pollution – dangerous to health
- All Fossil Fuels
 - Adds CO$_2$ to atmosphere – greenhouse effect
Energy Transfer, PE, KE and Efficiency

Hydroelectric Power

• Kinetic energy of falling water converted into electricity using turbines
 – New hydro projects unlikely due to environmental and land-use constraints
 – Two-sided arguments
 • Environmental concerns
 • Development concerns

May 13, 2011
Energy Transfer, PE, KE and Efficiency

Wind Energy

- Advantages
 - Non-polluting
 - Don’t contribute to global warming
 - Renewable resource

- Disadvantages
 - Only work where winds are powerful and reliable
 - Take up a lot of space
 - Noisy, some environmental concerns
Energy Transfer, PE, KE and Efficiency

Other Energy Sources

- Geothermal Energy
- Nuclear Energy
- Tidal Energy

May 13, 2011
Energy Transfer, PE, KE and Efficiency

Future Energy Supplies

• Fusion Energy
 – Technology may be many years into the future
• Most alternate energy sources are very expensive
 – Cost of fossil fuels is still the lowest and easiest to distribute

May 13, 2011
Energy Transfer, PE, KE and Efficiency

Efficiency and Energy Transfer

Total energy or work or power in

Machine

Useful energy or work or power out

Non-useful energy or work or power out
(usually heat)
Energy Transfer, PE, KE and Efficiency

Efficiency and Energy Transfer

Total energy or work or power in → Machine → Useful energy or work or power out

Electrical energy or power in → Light Bulb → Light energy or power out

Non-useful energy or work or power out (usually heat)
Non-useful heat energy or power out
Efficiency and Energy Transfer

Total energy or work or power in

Machine

Useful energy or work or power out

Non-useful energy or work or power out (usually heat)

Electrical energy or power in

Light Bulb

Light energy or power out

Non-useful heat energy or power out

100W or 100J/s

Light Bulb

60W or 60 J/s

40W or 40 J/s

May 13, 2011
Efficiency and Energy Transfer

100W or 100J/s

Light Bulb

60W or 60 J/s

40W or 40 J/s

Efficiency = \text{useful energy/work/power out} \times 100 \% \over \text{total energy/work/power in}

Efficiency of light bulb = \frac{60 \times 100 \%}{100} = 60 \%